Mining Temporal Reservoir Data Using Sliding Window Technique

نویسنده

  • Norita Md Norwawi
چکیده

0974-9683/CIIT–IJ-1847/06/$20/$100 © 2011 CiiT Published by the Coimbatore Institute of Information Technology Abstract---Decision on reservoir water release is crucial during both intense and less intense rainfall seasons. Even though reservoir water release is guided by the procedures, decision usually made based on the past experiences. Past experiences are recorded either hourly, daily, or weekly in the reservoir operation log book. In a few years this log book will become knowledge-rich repository, but very difficult and time consuming to be referred. In addition, the temporal relationship between the data cannot be easily identified. In this study window sliding technique is applied to extract information from the reservoir operational database: a digital version of the reservoir operation log book. Several data sets were constructed based on different sliding window size. Artificial neural network was used as modelling tool. The findings indicate that eight days is the significant time lags between upstream rainfall and reservoir water level. The best artificial neural network model is 24-15-3.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mining Frequent Patterns in Uncertain and Relational Data Streams using the Landmark Windows

Todays, in many modern applications, we search for frequent and repeating patterns in the analyzed data sets. In this search, we look for patterns that frequently appear in data set and mark them as frequent patterns to enable users to make decisions based on these discoveries. Most algorithms presented in the context of data stream mining and frequent pattern detection, work either on uncertai...

متن کامل

Mining frequent itemsets over data streams using efficient window sliding techniques

Online mining of frequent itemsets over a stream sliding window is one of the most important problems in stream data mining with broad applications. It is also a difficult issue since the streaming data possess some challenging characteristics, such as unknown or unbound size, possibly a very fast arrival rate, inability to backtrack over previously arrived transactions, and a lack of system co...

متن کامل

Frequent Patterns Mining over Data Stream Using an Efficient Tree Structure

Mining frequent patterns over data streams is an interesting problem due to its wide application area. In this study, a novel method for sliding window frequent patterns mining over data streams is proposed. This method utilizes a compressed and memory efficient tree data structure to store and to maintain sliding window transactions. The method dynamically reconstructs and compresses tree data...

متن کامل

Variance-wise Segmentation for a Temporal-Adaptive SAX

The Symbolic Aggregate approXimation algorithm (SAX) is a very popular symbolic mapping technique for time series data, and it is widely employed in pattern identification, sequence classification, abnormality detection and other data mining research. Although SAX is a general approach which is adaptable to most data, it utilises a fixed-size sliding window in order to generate motifs (temporal...

متن کامل

An Improvement in Temporal Resolution of Seismic Data Using Logarithmic Time-frequency Transform Method

The improvement in the temporal resolution of seismic data is a critical issue in hydrocarbon exploration. It is important for obtaining more detailed structural and stratigraphic information. Many methods have been introduced to improve the vertical resolution of reflection seismic data. Each method has advantages and disadvantages which are due to the assumptions and theories governing their ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011